Dallas Public Library

Water for energy and fuel production, Yatish T. Shah

Label
Water for energy and fuel production, Yatish T. Shah
Language
eng
Bibliography note
Includes bibliographical references and index
Illustrations
illustrations
Index
index present
Literary Form
non fiction
Main title
Water for energy and fuel production
Nature of contents
bibliography
Oclc number
866936518
Responsibility statement
Yatish T. Shah
Series statement
Green chemistry and chemical engineering
Summary
"Water in all its forms may be the most important solvent in the development of the new "Energy Economy". This book illustrates that as energy and fuel industries diversify, we are transitioning to an economy where water will play a more and more important role in the supply of energy and fuels. It discusses the role of water in the production of raw fuels such as oil, gas, coal, uranium, and biomass. It also describes methods for how supercritical water and steam are vital for the conversion of raw fuels to synthetic fuels"--, Provided by publisher
Table Of Contents
Machine generated contents note: 1.1. Global Energy Landscape: Past, Present, and Future -- 1.2. The Theme and Outline of the Book -- 1.2.1. Chapter 2: Water for Raw Fuel Production -- 1.2.2. Chapter 3: Water as Energy Carrier -- 1.2.3. Chapter 4: Steam for Synthetic Gas Production -- 1.2.4. Chapter 5: Synthetic Fuel Production by Water under Subcritical Conditions -- 1.2.5. Chapter 6: Production of Synthetic Fuels by Aqueous-Phase Reforming -- 1.2.6. Chapter 7: Production of Synthetic Fuels and Chemicals by Hydrolysis Followed by Selective Catalytic Conversions -- 1.2.7. Chapter 8: Production of Hydrogen and Methane by Anaerobic Digestion of Aqueous Waste -- 1.2.8. Chapter 9: Production of Ethanol by Aqueous-Phase Fermentation -- 1.2.9. Chapter 10: Production of Synthetic Fuels by Supercritical Water -- 1.2.10. Chapter 11: Production of Hydrogen by Water Dissociation -- 1.2.11. Chapter 12: Production of Methane from Gas Hydrates -- 1.2.12. Chapter 13: Water as a Direct Source of EnergyContents note continued: 1.3. Water-Based Refinery and Water Management for the -- References -- 2.1. Introduction -- 2.2. Increased Water Usage for Recovery of Coal Bed Methane and Gas from Geopressurized Zones -- 2.3. Enhanced Oil Recovery (EOR) Process -- 2.3.1. Chemical Processes -- 2.3.1.1. Surfactant[--]Polymer Solution (Microemulsion Flooding) -- 2.3.1.2. Polymer Solution -- 2.3.1.3. Caustic Alkaline Solution -- 2.3.2. Thermal Processes -- 2.3.2.1. Steam Stimulation -- 2.3.2.2. Hot Water Injection -- 2.3.2.3. In Situ Combustion -- 2.4. Role of Water in the Fracking Process -- 2.5. Water Requirement for Mining, Preparation, and Extraction of Solid Fuels -- 2.5.1. Oil Shale Industry -- 2.5.2. Tar Sand and Heavy-Oil Industries -- 2.5.3. Uranium Mining and Leaching -- 2.5.4. Coal Mining and Preparation -- References -- 3.1. Introduction -- 3.2. Role of Water in Production of Nuclear Power -- 3.2.1. Light Water Reactor -- 3.2.2. Boiling Water Reactor -- 3.2.3. Pressurized Water ReactorContents note continued: 3.2.4. Pressurized Heavy Water Reactor (CANDU) -- 3.2.5. Graphite-Moderated, Direct Cycle (Boiling Water) Pressure Tube Reactor -- 3.2.6. Supercritical Water-Cooled Reactor -- 3.3. Hydrothermal Processes for Recovery of Geothermal Energy -- 3.3.1. Enhanced Geothermal Systems -- 3.3.2. Coproduction of Geothermal Electricity in Oil and Gas Wells -- 3.4. Role of Water in Storage of Solar Energy -- 3.5. Steam Turbine -- References -- 4.1. Introduction -- 4.2. Mechanisms, Kinetics, and Catalysis of Steam Gasification and Reforming -- 4.2.1. Mechanism of Steam Gasification -- 4.2.2. Mechanism of Steam Reforming -- 4.2.3. Catalysts for Steam Gasification -- 4.2.3.1. Dolomite, Olivine, and Alkali Metal-Based Catalysts -- 4.2.3.2. Nickel-Based Catalysts -- 4.2.4. Catalysts for Steam Reforming -- 4.3. Dry Reforming -- 4.4. Tri-Reforming -- 4.5. Effects of Feedstock and Operating Conditions on Product Distributions -- 4.5.1. Steam Gasification -- 4.5.1.1. Coal -- 4.5.1.2. BiomassContents note continued: 4.5.1.3. Mixed Feedstock -- 4.5.1.4. Tar -- 4.5.1.5. Black Liquor -- 4.5.1.6. Lignin -- 4.5.2. Steam Reforming -- 4.5.2.1. Ethanol -- 4.5.2.2. Methanol -- 4.5.2.3. Liquid Hydrocarbons -- 4.5.2.4. Glycerol -- 4.5.2.5. Biomass -- 4.5.2.6. Mixed Feedstock -- 4.5.2.7. Carbon and Carbon Monoxide -- 4.5.2.8. Bio-Oil -- 4.6. Steam Gasification and Reforming Reactors -- 4.6.1. Steam. Gasification Reactors -- 4.6.1.1. Fixed-Bed Gasifiers -- 4.6.1.2. Suspended Bed Reactor -- 4.6.1.3. Plasma and Free Radical Gasifiers -- 4.6.1.4. Molten Salt Steam Gasification Reactors -- 4.6.2. Steam Reforming Reactors -- 4.7. Novel Steam Gasification and Reforming Processes -- 4.7.1. Solar Gasification Technology -- 4.7.2. Solar Gasification Reactors and Processes -- 4.7.3. Solar Reforming -- 4.7.3.1. ASTERIX: Solar Steam Reforming of Methane -- 4.7.3.2. The Weizmann Institute Tubular Reformer/Receiver -- 4.7.3.3. Soltox Process -- 4.7.3.4. Open-Loop Solar Syngas ProductionContents note continued: 4.7.3.5. Other Solar Reforming Processes -- 4.7.4. Microwave-Assisted Reforming -- 4.7.5. Underground Coal Gasification -- 4.7.5.1. Underground Gasification Reactors -- 4.7.6. Other Novel Processes -- References -- 5.1. Introduction -- 5.1.1. Properties of Water at High Temperature and Pressure -- 5.2. Hydrothermal Carbonization (Wet Pyrolysis) -- 5.2.1. Reaction Mechanisms -- 5.2.2. Effects of Operating Conditions -- 5.2.3.Comparison of HTC and Dry Pyrolysis Process -- 5.2.4. Product Characteristics and Usages -- 5.2.5. Process Considerations -- 5.3. Hydrothermal Liquefaction -- 5.3.1. Reaction Mechanisms -- 5.3.2. Effects of Operating Conditions on HTL Process -- 5.3.2.1. Pressure, Temperature, and Residence Time -- 5.3.2.2. Biomass Particle Size, Heating Rate, and Concentration -- 5.3.2.3. Gas and Liquid Properties -- 5.3.3. Role of Feedstock -- 5.3.3.1. Biowastes -- 5.3.3.2. Lignocellulose -- 5.3.3.3. Algae -- 5.3.4. HTU Process -- 5.4. Hydrothermal GasificationContents note continued: 5.4.1. Catalysts for HTG -- 5.5. Coal[--]Water Chemistry -- 5.5.1. Effect of Water Pretreatment of Coal on Coal Liquefaction -- 5.5.2. Coal Liquefaction in High-Pressure and High-Temperature Water -- 5.5.3. Coal[--]Water Mixture as Fuel -- 5.5.3.1. Production of CWF -- 5.5.3.2. Fuel Preparation and Transportation -- 5.5.3.3.Combustion of CWF -- References -- 6.1. Introduction -- 6.2. Aqueous-Phase Reforming -- 6.3. APR versus Steam Reforming -- 6.4. Thermodynamics of APR -- 6.5. Kinetics and Catalysis of APR Process -- 6.5.1. Effects of Temperature, Carbon Number, and Pressure -- 6.5.2. Effects of Catalysts and Supports -- 6.5.3. Effects of Promoters and Acidity of Liquid and Solids -- 6.5.4. Effects of Feedstock -- 6.5.4.1. APR of Ethylene Glycol, Alcohols, and Glycerol (Primary Feedstock with High Vapor Pressure) -- 6.5.4.2. APR of Sugar and Glucose (Primary Feedstock with Low Vapor Pressure) -- 6.5.4.3. APR of Biomass and Cellulose (Secondary Feedstock)Contents note continued: 6.5.5. Novel Reactor Designs -- 6.5.6. Summary -- 6.6. Production of Syngas and Monofunctional Groups and Their Upgrading -- 6.6.1. Syngas -- 6.6.2. Monofunctional Groups -- 6.7. Virent's Bioforming Process -- References -- 7.1. Introduction -- 7.2. The Hydrolysis Process -- 7.3. Upgrading of Intermediate Products from the Biofine Process -- 7.3.1. Transformation of Levulinic Acid -- 7.3.2. Gamma-Valerolectone -- 7.3.3. Furfuryl and Hydroxymethyl Furfuryl -- 7.3.4. Formic Acid -- 7.3.5. Biofine Char -- 7.4.Comparison of Biofine Process with Other Technologies -- 7.4.1. DIBANET Project -- 7.4.2. Biofine Process versus Fermentation Process -- 7.4.3. Biofine Process versus Bioforming Process -- 7.5. Large-Scale Biofine Process -- References -- 8.1. Introduction -- 8.2. Basic Principles of Anaerobic Digestion -- 8.3. Microbes and the Effects of Operating Conditions -- 8.3.1. Effects of Temperature and Ammonia Inhibition -- 8.3.2.pH Effect -- 8.3.3. Nutrients EffectContents note continued: 8.4. Feedstock Effects -- 8.4.1. Coir Pith -- 8.4.2. Whey -- 8.4.3. Distillery Spent Wash -- 8.4.4. Swine Waste -- 8.4.5. Byproducts of Biodiesel Production -- 8.4.6. Palm Oil Mill Effluent -- 8.4.7. LCFAs in Wastewater -- 8.4.8. Food and Kitchen Organic Waste -- 8.4.9. Wastewater Treatment -- 8.4.10. Dairy Effluent -- 8.4.11. Tofu Wastewater -- 8.4.12. Fruit Waste -- 8.5. Co-Digestion -- 8.6. Effects of Harvesting, Storage, and Pretreatment -- 8.6.1. Effect of Harvesting -- 8.6.2. Storage -- 8.6.3. Pretreatment -- 8.7. Types of Fermentation and Associated Digester Configurations -- 8.7.1. Wet Fermentation -- 8.7.2. Dry Fermentation -- 8.7.3. Batch Fermentation -- 8.7.4. Two-Stage Fermentation -- 8.7.5. Novel Digester Technology -- 8.8. Simulation, Modeling, Scale-Up, and Control of Fermentation Process -- 8.9. Purification of Biogas -- 8.10. Utilization of Biogas and Digestate -- References -- 9.1. Introduction -- 9.2. Grain (Corn) Ethanol -- 9.2.1. Starch HydrolysisContents note continued: 9.2.2. Yeast Fermentation -- 9.2.3. Ethanol Purification and Product Separation -- 9.2.4. Byproducts and Coproducts -- 9.2.5. Environmental Implications -- 9.3. Corn to Ethanol Process Technologies -- 9.3.1. Wet Milling Technology for Conversion of Corn to Ethanol -- 9.3.2. Dry Milling Corn-to-Ethanol Process -- 9.4. Cellulosic Ethanol -- 9.4.1. Pretreatment -- 9.4.1.1. Rapid Steam Hydrolysis -- 9.4.1.2. Dilute Acid Prehydrolysis -- 9.4.1.3.Organosolv Pretreatment -- 9.4.1.4.Combined RASH and Organosolv Pretreatment -- 9.4.1.5. Ionic Liquid Pretreatment -- 9.4.2. Hydrolysis -- 9.4.2.1. Acid or Chemical Hydrolysis -- 9.4.2.2. Enzymatic Hydrolysis -- 9.4.2.3. Mechanism of Cellulose Hydrolysis -- 9.4.3. Fermentation -- 9.4.3.1. Separate Hydrolysis and Fermentation -- 9.4.3.2. Simultaneous Saccharification and Fermentation -- 9.4.3.3.Comparison between SSF and SHF Processes -- 9.4.3.4. Xylose Fermentation -- 9.4.4. Ethanol Extraction during FermentationContents note continued: 9.4.5. Lignin Conversion -- 9.4.6. Coproducts of Cellulosic Ethanol Technology -- 9.4.7. Future Directions for Cellulosic Ethanol -- 9.5. Fermentation of Sugar to Isobutanol -- References -- 10.1. Introduction -- 10.2. Properties of SCW -- 10.3. Role of SCW in Chemical Synthesis -- 10.4. Oxidation in SCW -- 10.4.1. Catalysts for SCWO -- 10.5. Decomposition and Extraction of Materials by SCW -- 10.6. Gasification in SCW -- 10.7. Reforming in SCW -- 10.7.1. Liquid Fuels -- 10.7.2. Biomass -- 10.7.3. Glycerol -- 10.7.4. Ethylene Glycol -- 10.7.5. Methanol -- 10.7.6. Ethanol -- 10.8. Tri-Reforming in SCW -- References -- 11.1. Introduction -- 11.2. Electrolysis and Its Derivative Technologies -- 11.2.1. Alkaline Electrolysis -- 11.2.2. HTE Process -- 11.2.3. HPE Process -- 11.2.4. Photoelectrolysis -- 11.2.5. Photo-Aided Electrolysis -- 11.2.6. Photovoltaic Electrolysis -- 11.2.7. Solar Electrolysis -- 11.3. Photochemical and Its Derivative TechnologiesContents note continued: 11.3.1. Water Splitting on Semiconductor Catalysts (Photocatalysis) -- 11.3.1.1. Titanium Oxide Photocatalysts -- 11.3.1.2. Tantalates and Niobates -- 11.3.1.3. Transition-Metal Oxides, Nitrides, and Oxynitrides -- 11.3.1.4. Metal Sulfides -- 11.3.2. Photobiological Production of Hydrogen from Water -- 11.3.3. Plasma-Induced Photolysis -- 11.4. Thermal and Thermochemical Decomposition of Water -- 11.4.1. Thermochemical Decomposition of Water -- 11.4.1.1. The UT-3 Cycle -- 11.4.1.2. Zn/ZnO Cycle -- 11.4.1.3. SnO/SnO2 Cycle -- 11.4.1.4. Mixed Iron Oxide Cycle -- 11.4.1.5. Carbothermal Reduction of Metal Oxides -- 11.4.1.6. Sulfur Family Thermochemical Water Splitting Cycles -- 11.4.1.7.S-I Cycle -- 11.4.1.8. The Westinghouse Process -- 11.4.1.9. Copper-Chlorine Cycle -- 11.4.1.10. Copper-Sulfate Cycle -- 11.5. Other Miscellaneous Technologies -- 11.5.1. Chemical Methods -- 11.5.2. Magmalysis -- 11.5.3. Radiolysis -- 11.5.4. Shock Waves and Mechanical PulsesContents note continued: 11.5.5. Catalytic Decomposition of Water -- 11.5.6. Plasmolysis -- 11.5.7. Magnetolysis -- References -- 12.1. Introduction: What Is Gas Hydrate and How Is It Formed? -- 12.2. Sources, Sizes, and Importance of Gas Hydrate Deposits -- 12.3. Importance of Gas Hydrates on Offshore Oil and Gas Operations -- 12.3.1. Drilling -- 12.3.2. Production by Enhanced Oil and Gas Recovery Methods -- 12.3.3. Natural Gas Hydrates versus Liquefied Natural Gas in Transportation -- 12.4. Environmental Impacts of Gas Hydrates -- 12.5. Production of Methane from Gas Hydrate Reservoirs -- 12.5.1. Thermal Stimulation -- 12.5.2. Depressurization -- 12.5.3. Inhibitor Injection -- 12.5.4. Gas Exchange -- 12.5.5. EGHR Method -- 12.5.6.Computer Simulation -- 12.5.7.Commercial Applications -- References -- 13.1. Introduction -- 13.2. Hydroelectric Power by Water Dams -- 13.2.1. Conventional Dams -- 13.2.2. Pumped Storage -- 13.2.3. Other MethodsContents note continued: 13.2.4. Advantages and Disadvantages of Hydroelectric Power -- 13.2.4.1. Advantages -- 13.2.4.2. Disadvantages -- 13.2.5. Environmental Issues -- 13.2.6. Size and Capacities of Hydroelectric Power Facilities -- 13.2.6.1. Small Hydropower Plants -- 13.2.6.2. Microhydropower Plants -- 13.2.6.3. Picohydropower Plants -- 13.3. Hydrokinetic Energy and Power Generation -- 13.3.1. Why Hydrokinetic Energy? -- 13.3.2. Hydrokinetic versus Hydroelectric Energy: Potentials and Issues -- 13.3.3. Hydrokinetic Power Devices -- 13.3.3.1. Wave Energy Converters -- 13.3.3.2.Commercial Applications of WEC -- 13.3.3.3. Rotating Hydrokinetic Devices -- 13.3.3.4. Devices to Harness Tidal Power -- 13.3.3.5. Hydrokinetic Power Barges -- 13.3.3.6. Criteria for Choice of a Device and Its Location -- 13.3.4. Recent Commercialization Examples in the United States -- 13.4. Ocean Thermal Energy Conversion (OTEC) -- 13.4.1. Operating Principles -- 13.4.2. Operating Sites -- 13.4.3. Other Usages of OTECContents note continued: 13.4.4. Barriers to Implementation -- 13.5. Growth of Hydrokinetic Energy and OTEC Industries and Cost of Hydrokinetic and OTEC Power -- References
Content
Mapped to